AUTHOR	McLaughlin, Margaret J.; Owings, Maria F.
TITLE	The Use of Extant National Data Bases To Study the Relationships among States' Socioeconomic Features and Special Education Implementation.
PUR DATE	Mar 89 9
NOTE	144p.; Paper presented at the Annual Meeting of the American Educational Research Association (San Francisco, CA, March 27-31, 1989). Figures 1-9 are illegible due to small, blurred print.
PUB TYPE	Speeches/Conference Papers (150) -- Reports Evaluative/Feasibility (142)
EDRS PRICE	MFO1/PCO6 Plus Postage.
DESCRIPTORS	*Databases; Data Collection; *Disabilities;
	Educational Legislation; Elementary Secondary
	Education; *Federal Programs; Preschool Education; *Program Implementation; Research Methodology;
	*Research Tools; *Socioeconomic Influences; State
	Programs; Statistical Data
IDENTIFIERS	Education for All Handicapped Children Act

ABS'TRACT
Preliminary findings of this research effort provide support for the hypothesis that existing databases maintained by federal agencies for administrative or monitoring purposes can serve as useful data sources in special education policy research. The research explored the relationships among a number of state-level special education, fiscill, and demographic variabies using existing national data from governmental and private sources. Data sources included the "Annual $R e_{i}$ ort to Congress on the implementation of Public Law 94-142," the National Center for Fducation Statistics, the Census Bureau, the Bureau of Economic Analysis, the National Education Association, and the Office of Special Education Proyrams. Data were compiled for three points in time: 1976-77, the first year that data were reported on the implementation of Public Law 94-1.s2; 1980-81, a midpoint in the implementation process; and 1983-84, the most recent data available when the research project commenced. Data gathered included handicap identification rates; integration rates; per pupil expenditures; per capita personal income; percent of total educational revenue obtained from federal (but not special education) sources; percent of nonfederal educationai revenue obtained from state sources; and percent of school-aged children living in rural areas, having minority status, or living in poverty. Nine figures and 43 tables of statistical data support the project findings. (JDD)

[^0]
THE USE OF EXTANT NATIONAL DATA EASES TO STUDY THE RELATIONSHIPS AMONG STATES' SOCIOECONOMIC-FEATURES AND SPECIAL EDUCATION IMPLEMENTATION

Margaret J. McLaughlin
and
Maria F. Owings

Paper

Presented at the Annual Meeting of the American Educational Research Association

San Francisco, March 27-31, 1989

Institute for the Study of Exceptional Children aid Youth Department of Special Education, University or Maryland College Park, Maryland

INTRODUCTION

Since the passage of the 1975 Education of All Handicapped Children Act (P.L. 94-142), the education of handicapped students has been a major responsibility of state education agencies (SEAs). The SEA now serves an important and pivotal role in administering and scipporting federal special education policies, as well as in translating them into practice. As special education has established its place within the state education bureaucracy, the interaction between federal mandates and local concerns has set the stage for educational decisionmaking. The research presented here is based on the premise that, as the process of implementing federal policy at the state level has evolved, decisions regarding federal goals have been substantially influenced by fiscal and demographic realities within the states. More specifically, it asks the question: To what extent are differences in special education implementation practices among the states assoniated with states' fiscal and demographic characteristics.

This paper presents the preliminary findings of a three year research effort designed to explore the relationships among a number of state-level special education, fiscal, and demograptic variables using existing national data sources.

The primary purpose נf the research was to demonstrate the efficacy of using extant data bases, (those records maintained by federal agensies for administrative or monitcring purposs) in special education policy research . Thus, while new knowledge and insights about state variability in special education programs are important outcomes, also important is the confirmation of common knowledge or understandings about the implementation of those programs over time. Such confirmation demonstrates that extant data bases are valid and valuable sources for resea!'ch.

Background on the Use of Existing Large-Scale Data Bases

Federal education agencies are the repositories for numerous large-scale data bases. These include data collected specifically for evaliation or policy analyses, such as the National Assessment of Educational Progress, the National Longitudinal Surveys, and studies of federal programs such as compensatory education and Chapter I. However, substantial amounts of data on student and institutional characteristics, as well as on educational programs and practices are also routinely collected and maintained in public records. Much of these data are gathered in response to monitoring and reporting requirements mandated by federal educational legislation. Unlike the large-scale, special purpose surveys which are
utilized extensively for secondary analyses, these other large national data sets are generally overlooked as a daia base for research. They are used mainly to document progran operation and to determine expenditures, and are infrequently, if ever, used to inform program improvement efforts (Burstein, 1984).

It is somewhat surprising that these federal data sources remain underutilized ac a time when governments and their constituents alikt are demanding greater accountability. Federal education program data meet the inonitoring requirement of the legislation, but can also serve as a basis for program evaluation. Indeed, it is not uncommon for educational program evaluations to use administrative records and data collected for record-keeping purposes as a data source. This is done not only to avoid excessive costs and undue response burden, tut also becalise program records are considered to be fairiy reliable. As a result, surve; or questionnaire data are frequently merged with records from administrative sources. A good example of this practice is illustrated in the design of the Department of Education's High School and Beyond survey. A specific file of school-level data 3 leaned from administrative records, is maintained as part of that data base, and can be merged with student and/or teacher data, to provide educational context data for analysts. U.S. Census data and other national educational statistics have also been merged with original survey data for analytic purposes.

In the area of special education, there have been no national studies similar to those described above. Some attention has been given to the use of existing program data, primarily to conduct meta-analyses or to synthesize a body of research (Carlberg \& Kavale, 1980; Casto \& Mastropieri, 1986; Cook, Scruggs, Mastropieri \& Casto, 198586; Fuchs \& Fuchs, 1988; Kavale, 1980; 1981; 1982; Kavale \& Forness, 1983; 1984). While these studies have engendered much discussion and professional debate, the methodology is generally accepted and considered to have potential for providing a more global understanding of the effectiveness of special education interventions. Nonetheless,each analysis has been conscribed to a relatively small number of very specific variables contained within a single data source, often restricted to a single time point, and so was limited in scope.

The one (and perhaps onlv) large data base in special education that has been used for analytic purposes includes the data collected under the annual reporting requirements mandated in Section 618 of Part B of the Education For All Handicapped Children Act. Known as the Annual Reports to Congress on the Implementation of P.L. 94-142, these yearly data collection efforts have resulted in one of the more extensive and consistent national data repositories in the field of education. Beginning in the 1976-77 school year, states have been reporting the number of students served, by
handicapping condition; the types of educational placements i_{1}. which students are served; and the number of teachers and other professionals employed. States are required to include data for all children, ages 3 through 21, who receive special education or related services. Although the data collection mequirements have increased over the years, the core data set, on identification, placement, and personnel, has remained consistent over time. It represents, at a macroscopic level, a composite of the rational longitudinal implementation of special education programs.

The Annual Reports serve to document that the special education program is operating and to determine the amount of federal funds that each state will receive in support of its special education program. Until recently, they have had limited use for other than administrative accounting purposes. However, during the past few years, some portions of the data have been subjected to analysis (Gerber, 1984; Forness, 1985; Brinker \& Thorpe, 1985; Hallahan, Keller \& Bal1, 1986). For the most part these analyses have focused on descriptive aspects of the data, such as state-to-state variability in identification rates, or state comparisons with national trends in ideritification or placement rates. while each of the studies utilized some data from the Annual Reports, the methodologies varied substantially and did not suggest a consistent conceptual approach to defining variables or to conducting statistical analyses.

More recently, Danielsin and Bellamy (1989) used data from the Tenth Annsal Report, representing the 1985-86 school year, to examinf state-tomstate variation in the use of six types of educational nlacemencs for students with handicaps: reguiar classes, resource rooms, separate classes, separate schools, residential facilities, and homebound/hospital environments. Based on placement data for the 50 states, the District of Columbia, and Puerto Rico, the authors found substantial variation in the use of placements. This was cautiously interpreted to suggest that state-level policies may be biasing the placement of handicapped students. While Danielson and Bellamy were careful to note that their results do not reflect effectiveness, their research represents a further attempt to capture empirically the implementation of national special education policy.

While the above studies perhaps suggest an awareness of the potential importance and usefulness of the special educatior data for policy analysis, each has utilized data from a single point in time and only from the Annual Reports. One prior attempt has been made to examine Annual Report data in relationship to other state-level characteristics. Noel and Fuller (1985) used data from the First, Fourth, and Fifth Annual Reports, along with data from the U.S. Census and the National Center for Education Statistics. They investigated the relationships among statelevel demographic and fiscal variables and identification
and placement: rates. Using regression analyses, the authors found positive relationships tetween a state's identification rates and the amount of its financial resources, the percent of its population who are minorities and the percent of its children living in po arty. Poorer states and those with higher minority populations tended to identify more special education and learning disabled students.

The research reported in this paper was designed to expand that preliminary work by including a greater number of variables and broadening the time covered to three specified points in time, namely, the $1976-77,1980-81$, and 1983-84 school years. The focus was on demonstrating the feasibility of studying the implementation of special education policy by exploring the interrelationships among special education and other educational, fiscal, and demographic variables available in existing data sources. The research had two objectives: (1) to contribute to a better understanding of how P.L. 94-142 has been implemented over time, and (2) to demonstrate that the wealth of data currently maintained in existing national data bases has great potential for research.

Compiling and Merging the Data Bases

[^1]which conceptually represent the phenomenon of interest and the influences on it, and (2) identifying the data sources in which those variables are meaningfully operationalized. For this research, three categories of information were identified which were logically consistent with the overall purposes. These were special education implementation variables (identification and integration, to be deseribed subsequently), and fiscal and demograchic characteristics of the states. Since the implementation of federal legislation is a process that takes place over time, it was necessary that measures of the variables be available for multiple points in time. The Annual Report data assured that data on identification and placement were available since 1976-77. Information on states' demographic characteristics and financial resources is documented in government reports, tabulations, and data summaries available in the public record or through federal agencies like the National Center for Educetion Statistics (NCES) and the Census Bureau. Much of this data is also compiled annually.

Two considerations emerged as decisions were made about which variables to include in the analyses. First, because the focus was on state-level practices, it was necessary to obtain data for each of the 50 states. Some national data bases are comprised of data collected on a sample of states from which national estimates are made. Although such information is routinely used to indicate national trends, oiten the small sample sizes taken from low population
states make the numbers too unreliable for a state-by-state comparison. Therefore, this research only used those data sets in which the state summaries were based on either appropriate sample sizes or total eensuses.

The other consideration which affected the choice and use of the variables gleaned from different sets concerned their comparability. Yariables nominally similar were not necessarily operationalized in the same way. The most common example of this concerned the age ranges used as a basis for enroliment counts. For example, the age ranges for schoolaged children reported by the $U_{\text {. }} \mathrm{S}$. Census are not the same as those used by states to report handicapped children. Also, K through 12 enrollments reported by the states may and may not have included preschool counts, depending on the state reporting systiem. When utilizing variables based on enrollment counts, it was decided that the discrepancies introduced by these slight definitional differences would not be important enough to warrant adjustmerit, nor did any reasonable adjustment saem possible.

Descliption of the Data Base

The technical procedures described here were performed on a data base which was created by compiling and merging numerous data sets that contain information on general educational, economic, and social characteristics of the 50
states and D.C., as well as data on their special education practicos. Much of the data have been reformatted and subsetted from 1 arge and diverse national data bases. Taken together, the data provide a means for placing special education variaules within a state context and examining how they operate within (and are influenced by) the broader spectrum of state-level socio-economic characteristics. From the larger perspective of social policy analysis, the merged data provide the opportumity to address a recurring and promirient concern in the implementation of federal 1egislation, namely, identifying the correlates of variation in state-level implementation practices.

A to $\ddagger a l$ of 366 variables were compiled, and with few exceptions, most are available for the three points in time selected for these analyses (e.g. 1976-77, 1980-81, 198384). These years were selected because they represent (a) the first year that data were reported on the implementation of P.L. 94-142; (b) a midpoint in the implementation process and a time when reporting procedures should have been routinized within the states (as well as a time when major federal educational policies were changed as a result of the consolidation of several large edweational funding prog ams) ; and (c) the most recent data available when this research project commenced and the data base was being assembled. The data base is capable of being expanded to include additional pointis in time.

It should be noted timu, ile the data base includes information for the District of Columbia, it was decided not to include this jurisdiction in these analyses, as it is not comparable to the 50 states either fiscally or organizationally.

A summary of the data sources appears in the Appendix. The primary sources of data include the First (1976-77), Fifth (1980-81), and Seventh (1983-84) Annual Reports to Congress, which include counts of special education students by handicapping condition, percent change in each category and in the total between the first and second and between the second and third data points, ratio of handicapped children to teachers, number of special education teachers by condition, number of non-teaching staff, and funds awarded to each state under EHA Part B. The number of colleges offering special education teacher training and the number of programs by each disability category were obtained for 1983 only from the National Directory of Special Education Teacher Training Preparation Programs. From several sources within NCES, data were obtained on the number of special education degrees earned, per pupil expenditures, revenue receipts of public schools, and public school enrollment figures. Data on race, children living in poveriy, and children living in rural areas were obtained from the U.S. Census Bureau and so represent data from 1980 only. Information on per capita personal income came from the Bureau of Economic Analysis, Survey of Current Business.

Estimates of revenue receipts and teachers' salaries were obtained from the National Education Asscciation. Finally, data on special training and research and demonstration grants awardec in FY8G to each state were obtained from unpublished documents within the Office of Special Education Prosrams. $\dot{\text { sollectiveiy, the data set represents a unique and }}$ comprehensive collection of national educational statistics, which has great potential as a research base within special education.

Rata Quality Issues

The data base which has been compilec is uniquely suited for longitudinal analysie of state-levei polioj. Not only is the entire universe of states avallable for study, but, for most of the variables, there is very little missing data either within or across years, due tu the orl-going data collection efforts of federal agencles. Thus, sampling error does not pose a significant threat to the integrity of this data base. However, it is reasonable to assume that some amount of measurement error io present in the data. Froin a methodological perspective, the dual issues of measurement validity and reliability have implinatyors for the potential usability of extant data sources for quanctiatire analyses.

The issue of whether the measures being utilized are valid indicators of the phenomena of interest mast be addressed within the statec purposes of the investigation.

The primary goal is t explore possible relacionships among the state-level variables and to see how these change over time. It is not an objective of this research to provide estimaters of characteristics of special education populations or to describe individual state's efforts. Nor were these analyses intended to reveal brand new and surprising findings. To realize the major goal at this stage, it was necessary to ask whether the data behave as one would expect g ven what is known regarding major organizational, regulatory, service delivery, and budgetary charges since the mid-1970's. Berause the data are remarkably consistent in this regard, it seems likely that they provide a valid view of state-level practices.

Regarding rellability, admittedly a limitation of this study is that the flexibility or lack of consistency among states in incerpreting or reporting data is largely unknown. However, as Danielson and Bellamy (1989) noted, the staff from the Office of Special Education, USDE, have provided clarification and technical assistance each year to states to help them better categorize and report their program status. Directives such as these may lead to instrumentation artiracts which could be mistaken for year to year changus in the underlying phenomenon. However, it is difficult to say whether reduction in variability over time, if it is observeri, is dide to reporting changes or true changes. Further, whether or not average levels of a variakle would
be affected is not clear. Presumably, any distortions due to this type of measurement error would not be strong enough to conceal true relationships.

GENERAL METHODOLOGICAL APPROACH

The focus of these analyses was on exploring possible associations between special education variables and state fiscal and demographic characteristics during the years surrounding the implementation of P.L. 94-i42, namely, 1976 to 1984. A subsequent goal of the research was to develop an explanatory causal model of the factors influencing the implementation of the special education legislation. However, before this could be undertaken, it was necessary to examine the data for regularities which would provide the basis for more complex analyses. This paper reports only the initial phase of examining states' implementation efforts in relationship to their fiscal and social characteristics.

The intent of the special education legislation was to assure that states would both identify their handicapped students and serve them in the "least restrictive environment." Because identification and integration have emerged as major issues in the implementation of the federal mandate, they serve as the dependent measures in these analyses. Identification of handicapped students is important because federal reimbursements are contingent on the number of children identified as handicapped.

Integraticn or mainstreaming is also of concern because of the requirement that states place their handicapped students in the least restrictive envirorment. It was expected that, as states moved to implement the federal mandate, increases iri the numbers of handicapped students identified, as well as movement into "mainstreamed" classrooms, would be observed over the years.

To exanine whethor differences in state-level implementation practices were related in a linear fashion to finance or demographic characteristics, bivariate correlations with tre special education variables were produced. Theso were examined across tine three years to see if patterns emerged ove." time. For further descriftive purposes, each of the finance and demographic variables was transformed to a categorical variable, and average differences among the categories on the deriendent measures were also examined. This permitted a simplified description of the effect of each of the independant variables.

To create tine categorical variables, each of the independent variables was quartile coded, and each state was assigned a value indicating whether it was in the highest, upper middle, lower middle, or lowest quartile on that independent variable. Descriptive profiles were then developed for the groups on each of the categorical variables showing their special education practices at the three points in time. More specifically, the mean and standard deviation of each of the dependent measures at each
point in time was obtained for each group on each of the categorical independent variables. The analysis examined the average differences in identification and integration rates among the groups of states within years; and whether, over the years, the differences diminished, increased, or remained unchanged.

Description of Dependent Measures

Identification Rates

The specific identification variables utilized in tinis study were based on information taken from the Annual Reports. For each state: information is given on the total number of children, ages 3 to 21 , who were identified as handicapped, as well as a oreakdown of the counts by handicapping condition. Data on special education counts overal? and within three areas of disability for the three years menticned were selected for this investigation. The specific disability conditions examined were learning disabled (LD), emotionally disturbed (ED), and multiply handicapped (ML). They were chosen because they seem to be fairly representative of the type and degree of disability within the entire range r.f
handicapping conditions. [NOTE: For the category ML, multiply handicapped, data are not available for 1976-77.] Identification rates for each state were computed for each of the three years by taking each of the handicapped
child counts (total, LD, ED, and ML) as a percent of the total school-aged enrollment for the same year. Using enrollment figures as the base controlled for the size of the school-aged population, which varied greatly among the states, and also maintained comparability with other measures. It was decided not to compute each of the three disatility categories as a percent of the total special education population in order to avoid any artifacts related to the 12% caf. Using the same base also maintains comparability with other measures.

Integration Rates

The measures of integration employed were based on the number of handicapped students placed in various types of educational environments. Because federal guidelines require that the type of setting in which educational services are provided to handicapped children be included in the Annual Report, data are available on the number of children with handicaps who are served in several categories of educational placement: regular classrooms, separate classrooms, separate day schools, and other environments (including separate residential schools and home or hospital environments). Use of different placement categories follows guidelines outlined by the Office of Special Education within the U.S. Department of Education. However, it does
seem plausibie that, because tederal assistance in reporting has been provided over the years, states have gained more facility in utilizing the categorization system. Thus, they may have produced more accurate figures with each reporting year.

Measures of special education integration (or use of different placements) were computed for each of the three years of interest by converting the placement counts to cumulative placement rates a statistic developed by Danielson and Bellamy, (1989). This statistic takes the number of chiluren in a given category plus those in all more restrictive placements as a function of the schocl-age population. The originators of the statistic suggest that, "The cumulative placement rate statistic allows one to ask what percentage of school-aged students in a state are served in a particular educational placement and all more segreyated placements" (p.449).

For the purposes of the present analyses, the statistic was computed with reference to the total elemencary and secondary enrollment within a state, which differs slightly from the computation used by the original authors. School enrollment figures were considered to be appropriate denominators since annual data which are actual figures (and not estimates) are available. To facilitate interpretability, particularly for categories with reiatively small numbers, rates per million we o computed.

For each of the three disability categories as well as for the total special education population, four integration measures were computed (for each of che three years). For narrative purposes, the designation given to each of the integration measures corresponds to the least restrictive environment in the numerator. Thus, "ragular classes" represents those placed in either regular or special classes, separate schools, and other environmants. "Special classes" includes placements outside the regular classroom (i.e. not mainstreamed), including special classes, separate schools, and other environments. "Separate schools" includes those and "other environments." As mentioned above, the most restrictive placements, i.e. "other" environments, includes residential schools and home and hospital placements.

Dascription of Independent Variables

Four measures of state financial resources and three measures of state demographic conditions served as the independent variables in these analyses. The four filance variables included: (1) per pupil expenditures (PPFXP); (2) per capita personal income (FIPC); (3) percent of total educational revenue obtained from federal (but not special education) sources (ADJFER); and (4) percent of rionfederal educational revenue obtained from state sources (STPCT). The demographic variables were: (1) percent of school-aged chilaren who were living in rural areas (RURAL); (2) percent
of school-aged children who were reported as having minority status (MINORITY, i.e. black, Hispanic, As:ian, or American Indian/Pacific Islander); and (3) percent of related children enrolled in school who were liwing in poverty (POVERTY).

Each of the independent variables was treated separately in these analyses. One reason for this was that this research represents an initial attempt to explore the possibility of using existing state-level datia for policy analyses. At this stage, the goal has been to look for regularities in the data, which might suggest that more sophisticated modeling of the phenomena with this data would prove worthwhile. Examination of the bivariate correlations served as a preliminary step to developing a multivariate mode1 Another reason for this approach was that each independent variable was viewed as providing a slightly 'ifferent perspective on state context. Although they were related, most of the intercorrelations among the independant variables were in the low to moderate range (i.e. less than .50). Table 1 shows the intercorrelations among finance and demographic variables. The means and standard deviations of the independent variables are presented in Table 2.

Several relationships among the independent variables are worthy of note. States with higher levels of federal assistance tenued to be those with higher proportions of children in poverty ($r=.84$), higher proportions of minority children ($r=.54$), and lower levels of per pupil expenditures
($r=-.50$) and per capita p rsonal income ($r=-.55$). States with higher levels of state support or involvement in their education tended to be those having a larger proportion of their total reverue from federal sources (not including special education, $r=.62$), and having higher proportions of minority children ($r=.57$) and children in poverty ($r=.45$). Of course, states with higher proportions of children in poverty tended to have lower per pupil expenditures ($r=-.45$) and lower per capita personal i.וcome ($r=-.56$). A similar, though slightly weaker, relationship with PPEXP and PIPC was noted for states with higher proportions of children in rural areas, but this was not the case for states with higher proportions of minority children. States with higher proportions of rural children did, however, have lower proportions of minority children ($r=-.42$). Finally, it is important to mention that the only finance variable which showed even a modest relationship to enrollment size was per capita pe "sonal income, and those correlations were in the . 20 range. Enrollment size was more substantiall; related to rural child population ($r=-.44$) and to children of minority status ($r=.34$).

Although only 1980 census data were available on the demographic variables, yearly data on the finance variables were available. As shown in Table 1, these variables displayed a great deal of stability over time. Nevertheless, each of the categorical finance variables was created using
the data from each of the three years under investigation. A description of the categorical independent variables follows.

Per Pupil Expenditures

States in the lowest quartile on this measure averaged between $\$ 1,090$ and $\$ 1,305$ in 1976, whereas those in the highest quartile averaged from $\$ 1,784$ to $\$ 3,389$ in that year. By the 1983-84 school year, these figures had doubled (in current dollars), nevertheless maintaining a large discrepancy in resources between states at the highest and lowest end of the scale. It should be noted tha+, the considerable variation on this measure is partly due to state-to-state differences in the cost of operating public schools and providing educational services and materials, as well as state educational prioitities, wealth, and size and needs of population served.

Per Capita Personal Income

If this variable is viewed as a iuirly reasonable indicator of a state's wealth, there is substantial variation in taxpayers' ability to support their public education system. The lowest quartile averaged between $\$ 4,662$ and $\$ 5,513$ in 1976, whereas the highest quartile averaged from $\$ 7,004$ to $\$ 11,599$. The figures for 1983-84 were about double the 1976 figures. These numbers have not been adjusted for inflation or cost-of-living allowances.

Proportion of Total Revenue from Federal Sources
Historically, the federal contribution to state education revenue has been much smalier than that provided by the state itself or by local sources. Nationally the federal proportion averaged about 10% in 1980, but it has decreased substantially during this decade. On a state-tostate basis, the federal contribution (after removing Part B funds) ranged from 4.6 to 22.9% in 1976. The states in the lowest quartile of federal assistance received 6.3% or less of their revenue from the federal government. For the highest quartile, this figure was at least 12.1%. By 198384 these figures had dropped by about a third.

State Share of Nonfederal Revenue

The reiative contributions of state and local governments to state educationa' revenue can differ markedly depending on historical trends or perceptions held by each regarding their role in supporting education. Differences in their tax base and funding priorities are also influencing factors. The measure utilized in these analyses represented the percent of the state's nonfederal education revenue that was from state sources. It can be viewsd as an indicator of the state's role in providing finaicial support for education or the degree of state presence in education. Measured this way, it avoids the problem associated with using separate variables for state and local proportional
contributions. These are almost inversely related, and seem more reflective of regional rather than fiscal differences. In 1976, the states in the lowest quartile of state share received $t \in t w e e n ~ 8.82$ and 38.94 \% of their norfederal revenue from state sources, and those at the highest quartile received from 65.37 to 100%. Because of changes in school financing in recent years, this variable, while having respectable stability across the years in this study, is slightly less stable than the other finance measures.

Percent of School-Aged children living in Rural Areas This variable, based on the 1980 Census, takes the number of persons 3 to 17 years of age living in rural areas as a percent of the total number of persons in that same age group. The lowest quartile had between 9.33 and 21.10% of their shild population living in rural areas. For the highest quartile, these figures ranged between 50.00 and 70.12 \%

Percent of School-Aged Children Who Are Minority
Census data also provide figures for the number of related children 3 to 17 years old who are enrolled in public schools, with breakdowns by both poverty and minority status. To compute the percent of children having minority status, the cutegories (1) black, (2) Spanish origin, (3) Asian and Pacific Islander, and (+) American Indian, Eskimo, and Aleut, were added, then taken as a percent of the total
figure. The lowest quartile had zero to 6.8 \% minority chiidren, and the highest had 30.75 to 75.14% minorit.y children.

Percent of School-Aged Childran wiring in Poverty

The lowest quartile of the poverty variable nad 7.4 to 10.7 \% of the children iiving in foverty, and the highest, quartile had between 17.6 and 29.8% in poverty.

RESUI.TS

Identification

Correlations between the identification and both the finance and demographic variables are given in table 3 . The means and standard deviations of the identification variables are presented in Table 4. While none of the individual correlations revealed more than moderate relationships, the correlations, as well as the quartile means (Tables $5,6,7,8,9,10,11$) indicated some definite trends. (Note: FIgures 1 and 2 graphically represent the relationsinips among quartiles.)

Nationally, special educatior identification rates increased 25% between 1976-77 and 1980-81, from 7.70 to 9.61 \%. By 1983-84, they had increased another 8% to 10.42 \%. Special education identification rate did not relate systematically to any financial variables or to POVERTY and MINORITY variables. A moderate relationship was observed
with RURAL in 1976 ($r=-.358$), but decreased greatly by 1983 ($r=-.105$). More specifically, in 1976, states with the lowest rural child populations identified a third more special education students than those with the highest rural population (8.28 versus 6.32%, respectively), but by 198384 this gar nad all but disappeared, (10.61 versus 10.01 , for the lowest and highest rural groups, respectively).

Nationally, increases in identification rates for the then disability areas differed from those for the total handicapped population. Identification rates for LD increased 80 \% between 1976 and 1980, and an additional 20 \% by 1983, making the 1983 rate more than double that of 1976 (2.12 versus 4.62%). [Note: in the $1976-77$ school years, a 2% cap was in effect on the LD identification.j Identification rates for emotionally disturbed (ED) increased 35% 笍 between 1976 and 1980, from .52" to . 721%. Between 1980 and 1983, they increased another 17% to $.846 \%$. No substantial change was observed nationally in identification rates for multiply handicapped between 1980 and 1983 .

Relationships between identification rates for the specific handicapping conditions and the independent. variables were stronger than those for total special education. For example, states with greater financial rescurces (1.e. PFEXF and PIPC) and lower rural child populations consistently identified more LD students, and these differences did not diminish over time. This in
illustrated by the finding that in 1983, states in tria lowest quartile of PPEXP and PIPC had LD identification rates about threefourths the size of those in the highest quartile. In the same year, states with the largest percent of rural children identified LD students at a rate 82% that of those with very few rural children. Further, states at the lowest end of the POVERTY variable tended to identify more LD students than those with higher proportions of children in poverty, and while these differences also decreased over time, they did not completely disappear. The MINORITY variable showed no systematic relationship to LD identification rates for any of the three years.

ED identification rates showed weak but positive relationships to PPEXP and PIPC and negative relationships to the ADJFER variable. States with greater financial resources as well as those with less federal assistance tended to identify more ED students. In 1983-84, the lowest federal assistance states identified over twice as many ED students as the states in the highest quartile $(x=1 . C 6 \mathrm{vs}$. $x=.50$ for each quartile respectively).

Moderate negative relationships between ED identification rates and RURAL were evident, and these relationships did not disappear over time. In 1976, states with lowest rural populations identified ED students at a rate 4 times the rate of the highest rural states. By 1983 this difference had decreased by about half, due to the

```
highest rural states doubling their ED identification rates
between the two years.
    Of further interest, was the tendency for states with lower
levels of children in poverty to identify more ED students.
These differences diminished somewhat over time.
    No marked relationships wi ih any of the indeporjent
variables were observed for the multiply handicapped
identification rates.
```

Integration of Total Special Education Stucients Correlations between the integration rates for total special equcation and both the finance and demographic variables are given in Table 12. Quartile means and standard deviations of the cumulative placement rates (integration variables) for total special education, are presented in Tables $13,14,15,16,17,18$ and 19. (Figures 3 and 4 present, graphically, the relationship among quartile cumulative placement means.)

As a baseline, it should be noted that nationally, between 1976 and 1983, cumulative placement rates of special education students in special classes (plus all more restrictive environments) increased 27% from 25,211 students per million to 32,064 per million. Cumulative placement rates in separate schools (includes the most restrictive placements) increased nationally by 24 \% during that same time period, from 5,984 students per million to 7,388 per million. Placement rates in "other" environments
(i.e. the most restrictive placements, which include residential schcols, institutions and homes/hospitals), however, decreased nationaliy by 23%, from 1,684 students per million in 1976 to 1,306 per million in 1983. These national trends were not reflected uniformly among the states, and distinct differences were observed among states with different financial and demographic characteristics.

In 1976, there was a tendency for states with higher PPEXP to place more spocial education students in special classes, than those with lowor PPEXP ($r=.225$). This relationship was not observed in the use of either separate schools or other environments. However. by 1983, differences in the use of con-mainstreamed environments had diminished somewhat ($\mathrm{r}=.133$), and stronger differences in the use of the most restrictive placements had emerged ($r=-.261$). Thus, a tendency for states with higher PPEXP to have lower placements in other environments had become more apparent. More specifically, while states in the lowest quartile of PPEXP had experienced very little change in their average placement, rates in other environments between 1976 and 1983, the average for the highest quartile had decreased by 65 \%.

The positive relationship between PIPC and the use of sjecial classes increased between $1976(r=.167)$ and 1983 (r $=.283)$. Over the 8 -year period, states with higher per capita income increased their placements in special classes more than lower PIPC states did, resulting in greater differences in 1983 than in 1976. No systematic relationship
existed in 1976 for the use of separate schools, however. But by 1983, a pattern of highar separate school placements for higher PIPC scates was observed ($r=.241$). In fact, states in the lowest quartile of PIPC had essentially maintained their placement rate in separate schools between 1976 and 1983, whereas the highest quartile had increased their rate by 44 \%.

Finally, while no systematic relationship with the use of "other" environment? had existed in 1976, by 1983 this had begun to change. States with higher PIPC tended to have fewer placements in these most restrictive environments. In fact, though the lowest quartile had decreased their placements in other environments by 25% over the time period, the highest quartile had decreased by 57%.

More noticeable relationships were observed between integration rates and RURAL and MINORITY variables. Higher placements in special classes tended to be in states with lower rural child populations ($r=-.222$) and the strengtr, of this relationship increased over time ($r=-.370$ in 1983). Similarly, higher placements in separate schools tended to be in states with lower rural child populations ($r=-.208$), a relationship which also became stronger by 1983 ($r=-.298$). This appears largely due to a greater increase in separate school placements during the 8 -year period by the lowest quartile, resulting in $₫ \gg r e a t e r ~ d i s c r e p a n c i e s ~ b y ~ 1983 . ~$ However, the tendency for states with high rural child populations to have fewer placements in other environments
in 1976 ($r=-.161$) was reversed by 1983 ($r=.179$). Placements in other environments had increased on the average for states at the highest quariile of rural child population, whereas the lower rural state, had decreased their placement rates in other environments by half.

While no systematic relationships existed between integration rates and [NORITY in 1976, by 1983 stronger relationships were observed with special class placements ($r=.204$) and with other environment placements ($r=-.227$). The direction of these relationships was opposite in the two cases. That is, a greater use of special class placements by states with higher minority child populations coincided with lower placement rates in other environments. Specifically, states in the higrest quartile of minority child population decreased their placements in other environments by 25% between 1976 and 1983, while the lowest quartile rad increased their placements in this category. And, while both had increased placements in less restricted environments, the increase for high minority child population states was greater than that for low.
frends in the use of the different plicements differed among states with varying levels of federal assistance and state involvement, but the patterns were not so clear-cut.

Integration of Learning pisabled Students
Correlations between the independent variables and integration rates for learning disabled students are
presented in Table 20. Quartile means and standard deviations are in Tables $21,22,23,24,25,26$, and 27. (Figures 5 and 6 present the comparisons among quartile means.) Placements for LD students showed generally stronger relationships with the independent variables than those for the total special education population. States with greater financial resources (higher PPE. ${ }^{\circ}$ and PIPC) tended to place more LD students in special classes than those with fewer financial resources. The strength of this association declined somewhat by 1983, yet the rates for the lowest quartiles remained only about one-fourth those of the highest quartiles.

An opposite pattern occurred for separate school placements, in that relatively unsystematic or weak relationships in 1976 became stronger and more linear by 1983. The highest quartiles of PPEXP and PIPC increased their use of separate school placements more than did the lowest quartiles during this time period. In fact, by 1983, the placement rate in special schools for the highest, quartile of PIPC was six times the rate of the lowest quartile.

Relationships between PIPC and PPEXP and the use of other environments were generally not quite so systematic. However, it is worth noting that the lowest quartiles increased their placements in these most restrictive environments between 1976 and 1983, whereas the highest quartiles decreased their rates during the same time period.

Negative relationships were observed between LD placement rates and ADJFER. In particular, in 1976, in all types of piacement categories, higher placement rates tended to be in states with lower levels of federal assistance. However, except for regular class placements, these relationships diminished or disappeared by 1983. Greater increases by the highest quartile in the use of special classes and separate schools helpea to reduce discrepancies with the lowest quartile, but did not completely elimina e them. On the other hand, differences apparent in 1976 in the use of other environment placements did almost disappear by 1983. This was largely due to increases by the highest federal assistance quartile and decreases by the lowest quartile in the use of these most restrictive environments.

States with higher rural child populations tended to place fewer LD students in special classes in 1976 ($r=-$.399), and this relationship became stronger by 1953 ($r=-$.504). Placement rate:; in special classes for the highest rural quartile were senerally about three-tenths those of the lowest quartile.

Negative associations with the use of separate school placements became stronger by 1983, indivating an increased tendency for high rural states to have fewer of these placements, this is reflected in the greater increase by : ? lowest quartile and very litt.le change by the highest quartile in these placements.
in the other hand, the relationship with other environments was nonexistent in 1976 and 1980, but became fuisitive by 1983 ($r=.166$). The highest quartile ned doubled their other environment placements between the two years, while the lowest quartile had decreased theirs by 43%.

An increasing positive relationship was observed between MINORITY and the use of special classes over the eight-year period ($r=.140$ in 1976 and $r=.337$ in 1983). This was due to the highest quartile increasing their special class placement somewhat more than the lowest quartile. Thus, higher special class placements remained in states with higher minority child populations. However, this coincided with decreasing negative relationships with separ 'e school placements (from $r=-.176$ in 1976 to $r=.042$ in 1983). In 1976, states with highest minority child populations tended to have lower placements in separate schools. The placement rate in separate schools for the highest quartile in 1976 was about half that of the lowest quartile, but the highest quartile more than doubled their rate by 1983, resulting in minimal differences between the two quartiles.

Integration of Emotionally Disturbed Students

Table 28 presents the correlations between the independent variables and integration rates for emotionally disturbed students. Quartile means and standard deviations are in Tables 29, 30, 31, 32, 33, 34, and 35. (Figures 7 and

8 present the comparison anong quartile means.) Placement of $E D$ students also showed moderate relationships with the independent variables. States with greater financial
resources had higher placement rates in both special classes and separate schools in 1976. However, while the relationships between PPEXP and special classes decreased by 1983 ($r=.395$ to $r=.243$), the correlations between PIPC and special class placement increased ($r=.332$ to $r=.406$) over the eight years.

Differences in the use of separate schools became more systematic by 1983. The highest quartiles of both finance variables (i.e. PPEXP and PIPC) increased their separate schools placements more than the lowest quartiles. The placement rates for the highest quartiles were three to four times those of the lowest quartiles in 1983.

The relationships of PPEXP and PIPC with other environmeni, placement were positive in 1976 but nearly disappeared by 1983. Again, this was due to the highest quartiles decreasing their placements in these most restriciive environments, while the lowest quartiles increased their placement rates.

Also, states with higher projortions of federal
educational assistance had a lower placement across all settings, a pattern paralleled by states with high rural child populations and high proportions of children in poverty.

Integration of Multioly Handicapped Students
The correlations between the independent variables and integration rates for multiply handicapped students are given in Table 36. Quartile means and the standard deviations are in Tables 37, 38, 39, 40, 41, 42, and 43. (Figure 9 presents, the comparison among quartile means.) Cumulative placement rates for multiply handicapped students did not appear to relate to the majority of fiscal and demographic variables. Exceptions to this were the correlations betweer the use of other environments and PPEXP ($r=-.288$), PIPC ($r=-.223$), and RURAL ($r=.207$) in 1983. In general, differences in the use of special classes and separate schools decreased, while the use of other environments became increasingly different. By 1983, the highest quartilos of PPEXP and PIPC and the lowest quartiles of RURAL had placement rates in other environments that were one-fourth to one-third of those of their counterparts at the opposite end of the scale.

DISCUSSION

This research was aimed at assessing the feasibility of using extant national data bases for examining the implementation of federal special education policy. Data on identification and placement of speciai education students taken from the Annual Reports on the Implementation of F.L. 94-142 as well as public records of state-level financial
and demographic characteristics were merged into a singie data base. Relationships between the special education variables and the contextual characteristics were examined for linearity and patterns over time.

The results reported here indicate that identification and integration rates show systematic relationships with many state-level characteristics. The fact that these relationships srow distinct patterns supports the view that each independent variable provides a slightly different perspective or: the implementation issue. And though none of the correlation coefficients indicate more than moderate relationships, their pattern over time, as well as the descriptive view based on the quartiles, suggests that some of the variation among states in their implementation practices can be explained by selected fiscal and demographic factors. Nonetheless, it is important to remember that the data included in these analyses are scatelevel and represent an aggregation of local school districts as well as geographic regions. Substantial variation in wealth and educational practice exists within a state's borders, ard this variation cannoi be accurately represented at the national level.

These analyses illustrate that well-known national trends in the implementation of special education policy (i.e. greater identification and movement into less restrictive environments) appear to vary substantially among the states. The rather consistent relationships with
financial resource variables; such as per pupil expenditures and particularly per capita personal income, perhaps indicate a greater capacity for operating special education programs by the wealthier states. Increased utilization of less restrictive environments perhaps reflects a greater capacity for moving toward the "least restrictive environment" maıdate by states with greater financial resources and mere centrally located service populations. This is supported by the fact that wealthier states afiu those with lower rural child populations tended to have fewer placements in the most restrictive environments. In addition, the data illustrate the difficulties of rural states in delivering special education, as evidenced by their slower movement out of the most restrictive environments.

Of further incerest were the differences in identification rates for the specific categories of LD and ED. These categorie:s were much more reactive to the independent variables than the total special education identification rates. States with greater financial resources and those with smaller rural child populations tended to have higher rates than their counterparts at the lower end of these scales. However, the weakening correlations between rural states and identification of total special education and $L D$ itudents and rural status suggests or corfirms a "catch-up phenomena" meaning that some states, such as those with larger rural populations,
may have had less well developed special education programs at the beginning of P.L. 94-142 but over time have increased their capacity to identify and serve special education students. The weakening correlations are also likely due to the ceiling effect given the 12% reimbursement cap on identification of special education students.

The relationships between the dependent variables relating to multiply handicapped students and most of the independent variables were almost nonexistent. There may be several reasons for this. As a reporting category, this classification is newer than the others and has also undergone some definitional changes (e.g. the removal of the deaf-blind classification). It seems possible that the measures of the dependent variables have much unsystematic variation (i.e. inconsistency) which may limit their ability to detect systematic relationships with the independent variables. While it is unlikely that fiscal or demographic factors would influence child counts (identification rates) in this category, it is possible that fiscal variation may influerce the placements of these students. However, more data points are needed before any firm statements can be made.

A similar observation can be made regarding minority populations and identification variables. It appears that between 1980-81 and 1983-84 there is an increased, although very small, trend for higher minority states to identify fewer special education students, as well as fewer
emotionally disturbed students. While other research suggests that mincrities are overrepresented in special education, those trends are riot reflected in the state-level data. More information is necessary to examine whether, in fact, minority status is influencing identification in some systematic way. Additionally, in this study, the measure of minority status included all racial and ethnic categories reported by Census. Perhaps if individual races or ethnic groups were analyzed separately, the patterns would differ.

The results presented here provide support for the notion that existing data, collected to monitor the operation of the federal special education program, can serve as a useful data base for research. These analyses have not only validated common knowledge, but also have raised important and interesting questions relating to implementing ,ederal education programs. This is just a preliminary step in understanding the influence of statelevel socio-economic factors on identifying and serving the nation's handicapped children. Further exploration of these relationships, perhaps in a multivariate context, is warranted.

Burstein, L. (1984). The use of existing data bases in program evaluation and school improvement. Educational Evaluation and Folicy Analysis, s, 307-318.

Brinker, R.P., \& Thorpe, M.E. (1985). Some empirically derived hypotheses about the influenve of state policy on degree of integration of severely handicapped students. Remedial an: Special Education, 6, (3), 18-26.

Carlberg, C.G., \& Kavale, K. (1980). The efficacy of special versus regular class placement for exceptional children: A meta-analysis. Journal of Special Edlication, 14, 295-309.

Casto, G., \& Mastropieri, M.A. (1986). The efficacy of early intervention programs for handicapped children: A meta-analysis. Exceptional Children, 52, 417-424.

Cook, S., Scruggs, T.E., Mastropieri, M.A., \& Casto, G. (1985-1986). Hanaicapped students as tutors. journal of Special Education, 19, 483,492.

Danielson, L.C., \& Bellamy, G.T. (1989). State variation in placement of children with handicaps in segregated environments. Exceptional Children, 55, (5), 448-455.

Forness, S.R. (1985). Effects of public policy at the state level: California's impact on MR, LD, and ED categories. Remedial and Special Education, 6, (3), 18-26.

Gerber, M.M. (1984). The Department of Education's Sixth Annual Report To Congress on P.L. 94-142: Is Congress getting the full story? Exceptional Children, 51, (3), 209-224.

Hallahan, D.P., Keller, C.E., \& Ball, D.W. (1986). A comparison of prevalence rate variability from state to state for each of the categories of special education. Remedial and Special Education, 7, (2), 8-14.

Kavale, K.A. (1980). Auditory-visual integration and its relationship to reading achievement: A metaanalysis. Perceptual and Motor skills, 51, 947-955.

Kavale, K.A. (1982). The efficacy o stimulant drug treatment for hyperactivity: A meta-analysis. Journal of Learning Disabilities, 15, 290-289.

Kavale, K.A., \& Forness, S.H. (1983). Hyperactivity and diet treatment: A meta-anal,sis of the feingold hypothesis. Journal of Learning Disabilities. 16, 324-330.

Kavale, K.A., \& Forness, S.R. (1984). A meta-analysis assessing the validity of Wechsler Scale profiles and recategorizations: Patterns or parodies? Learning Disability Quarterly, 7, 136-156.

Noel, M.M., \& Fuller, B.C. (1985). The social policy construction of special education: The impact of state characteristics on identification and integration of handicapped children. Remedial and Special Education, 6, (3), 18-26.

Note: Cautions on Interpretirig Figures
As stated in the text and shown in Figures 1 through 9, each of the dependent, variables representing special education identification and integration rates was broken down by seven independeni variables winich had been quartile coded. Thus, the meail value on the dependent variable for each of the quartiles was computed, then graphed in a stacked bar chart. Each stacked bar represents the data for a given year (1976. 1980, or 1983). Within each bar, the quartile breakdown is represented by the four differently shaded components, with the size of each component representing the mean of the quartile on the dependent variable and its relative contribution to the entire bar. For a given dependent variabie, comparisons across years in the relative height of the bars as well as in the relative size of the components are possible. A visual inspection of the height of the bars relative to each other gives a general idea of how the dependent variable changes over time. Changes in the components can also be examined by looking at their relative sizes within a bar and across bars. If the height of the bar is approximated and then divided by four, a rough estimate of the national average on the dependent variable may be obtained.

However, certain cautionary notes are in order for those who examine the graphs without reading the text. At the very least, graphs should be examined with data tables nearby so as to check which figures are being yraphed. Note that the figures on which the graphs are based are all rates. Thus, it is not possible to sum them and obtain estimates of the total number of students within a given placement or having a particular kind of disability.

As mentioned in the text, the quartiles were created by dividing the distribution of a given independent variable into four equal parts, then assigning each state to one of the categories depending on their position within the distribution. Thus, states were assigned to one of four possible categories: LOW, LOW MIDDLE, HIGH MIDDLE, or HIGH. Where complete data are available, the sample sizes in each of the quartiles are 12, 13, 13, and 12, respectively. It is the mean of each of the quartiles which is being graphed, meaning that he variability with each quartile is not evident from the graph (though it does appear in the data tables). In many cases, this variation is substantial.

For the identification variables, data for total special education and for learning disabled appear on the same graph (i.e. use the same scaling for the Y-axis). A separate graph, with a different scale for the Y-axis is used for emotionally disturbed and multiply handicapped, which appear together on the same graph. For the placements variables,

- data for regular class and special class placements appear together on the same graph, whereas separate school and
other environment placements appear together but on a separate graph. It is important to note here as well the differences in scaling on the Y-axis for each of these graphs. Care should be taken not to make comparisons across graphs, based on the height or size of the bars, although such comparisons are possible within a given graph.

Recall also from the discussion in the text that the dependent variables for integration (placemient) are cumulative placement rates (as per Bellamy and Danielson, 1987). So, for example, cumulative placement rates in regular classes include those special education students who are in mainstreamed classes, plus those placed in more restrictive environments (i.e. special classes, separate schools, and other environments). The label assigned to a given placement represents the least restrictive environment on a continulim that extends to "other environments", the most restrictive/segregated environment. This issue is particularly relevant when comparing across placements, which should be avoided because of the confounding due to the nature of the measurement scale. Further, although the tables report cumulative placement rates per milition, the graphs give cumulative placement rates per thousand.

Figure 1 Comparisons Among Quartile Mean Identification Rates for Total Special Education and Learning Disabled.

IDENTIFICATION RATES FOR TOTAL SPECIAL EDUCATION \& LEARNING DISABLED BY ADFED

IDENTIFICATION RATES FOR TOTAL SPECIAL EDUCATLON \& LEARNING DISABLED BY PPEXP

IDENTIFICATION RATES FOR TOTAL SPECIAL EDUCATION \& LEARNING DISABLED BY PIPC

Whlow Pivi

IDENTIFICATION RATES FOR TOTAL SPECIAL EDUCATION \& LEARNING DISABLED BY STPCT


```
- Low oppat
[D] hald over
```

II Lomin etper EZA нseн orpor

IDENTIFICATION RATES FOR TOTAL SPECIAL EDUCATION \& LEARNING DISABLED BY MINOR

IDENTIFICATION RATES FOR TOTAL SPECIAL EDUCATION \& LEARNING DISABLED BY POV

IDENTIFICATION RATES FOR TOTAL SPECIAL EDUCATION \& LEARNING DISABLED BY RURAL

Figure 2 Comparisons Among Quartile Mean Identification Rates for Emotionally Disturbed and Multiply Handicapped.

IDENTIFICATION RATES FOR EMOTIONALLY DISTURBED \& MULTHANDICAPPED BY ADFED

IDENTIFICATION RATES FOR EMOTIONALLY DISTURBED \& MULTHANDCAPPED BY PPEXP

IDENTIFICATION RATES FOR EMOTIONALLY DISTURBED \& MULTIHANDICAPPED BY PIPC

IDENTIFICATION RATES FOR EMOTIONALLY DISTURBED \& MULTHANDICAPPED BY STPCT

50

IDENTIFICATION RATES FOR EMOTIONALLY DISTURBED \& MULTIHANDICAPPED BY MINOR

IDENTIFICATION RATES FOR EMOTIONALLY DISTURBED \& MULTIHANDICAPPED BY POV

IDENTIFICATKO RLATES FOR EMOTIONALLY DISTURBED \% MULTHANDICAPPED BY RURAL

Figure 3 Comparisons Among Quartile Mean Cumulative Placement Rates in Regular Classes and Special Classes for Total Special Education

INTEGRATION RATES FOR TOTAL SPEGAL EDJUCATION BY ADFED QUARTILES

INTEGRATION RATES FOR TOTAL SPECIAL EDUCATION BY PPEXP OUARTILES

52 PPECIAL EDUICATION BY PIPC QUARTILES

INTEGRATION RATES FOR TOTAL SPECLAL EDUCATION BY STPCT OJARTILES

INTEGRATION RATES FOR TOTAL SPECIAL EDUCATION BY MINORITY QUARTILES

INTEGRATION RATES FOR TOTAL SPECLAL EDUCATHN BY POVERTY QUARTILES

INTEGRATION RATES FGF IOTAL SPEEIAL EDUCATIUN BY RURAL QUARTILES

$\begin{aligned} \text { Figure } 4 & \begin{array}{l}\text { Comparisons Among Quartile Mean Cumulative Placement } \\ \text { Rates in Separate Schools and Other Environments for }\end{array} \\ & \text { Total Special Education. }\end{aligned}$

SEPARATE FACILITY PLACEMENTS FOR TOTAL SPECAAL EDUCATION BY ADFED QUARTILES

SEPARATE FACILITY PLACEMENTS FOR TOTAL SPECANL EDUCATION BY PPEXP QUARTILES

SEPARATE FACIUTY PLACEMENTS FOR TOTAL SPECHAL EDUCATION BY PIPC QUARTILES

SEPARATE FACILTTY PLACEMENTS FOR TOTAL SPECALL EDUCATION BY STPCT QUARTILES

5

Figure $5 \quad \begin{gathered}\text { Comparisons Among Quartile Mean Cumulative Placement } \\ \text { Rates in Regular Classes and Special Classes for }\end{gathered}$ Rates in Regular Classes and Special Classes for
Learning Disabled.

INTEGRATION RATES FOR LEARNNNG DISABLED by adjusted federal revenue quartiles

INTEGRATION RATES FOR LEARNNG DISABLED GY PER PUPIL EXPENDITURE QUARTILES

56

INTEGRATION RATES FOR LEARNING DISABLED BY PER CAPITA PERSONAL INCONIE QUARTILES

INTEGRATION RATES FOR LEARNNG DISABLED BY STPCT QUARTILES

integration rates for learnang disabled BY MINORITY QUARTILES

INTEGRATION RATES FOR LEARNNNG DISABLED BY POVERTY QUARTILES

INTEGRATION RATES FOR LEARNNO DISABLED by rural ouartiles

Figure 6 Comparisons Among Quartile Mean Cumulative Placement Rates in Separate Schools and Othnr Environments for Learning Disabled.

SEPARATE FACILITY PLACEMENTS FOR LEARNING DISABLED BY MINORITY QUARTLEE

SEPARATE FACHLTTY PLACEMENTS FOR LEARNING DISABLED BY POVERTY OUARTILES

[im LOM Moveaty
[i] hmib roventy

D] Lowlo poventr [ed hien moventy

SEPARATE FACILITY PLACEMENTS FOR LEARNING DISABLED BY RURAL OUARTILES

0
ETD Hien mume

Figure 7 Comparisons Among Quartile Mean Cumulative Placement Rates in Regular Classes and Special Classes for Emotionally Disturbed.

INTEGRATION RATES FOR EMOTIONALLY DISTURBED BY ADFED OUARTLES

INTEGRATION RLATES FOR EMOTIONALLY DISTURBED BY FPEXP OUARTILES

60

INTEGRATION PATES FOR EMOTIONALLIY DISTURBED BY PIPC QUARTILES

INTEGRATION RATES FOR EMOTIONALLY DISTURBED BY STPCT QUARTILES

INTEGRATION RATES FOR EMOTIONALLY DISTURBED BY MINORITY QUARTLLES

INTEGRATION HATES FOR EMOTIONALLY DISTURBEL BY POVERTY QUARTLES

INTEGRATION RATES FOR EMOTIONALIY disturien by pural quartiles

Figure 8
Comparisons Among Quartile Mean Cumulative Placement Rates in Separate Schools and Other Environments for Emotionally Disturbed.

SPECIA! F-ACILITY PL ACEASNTS FOF EMOTICNALIY DISTUREEG WY ADFES O

SEPARATE FACILITY PLACEMENT RATES FOR EMOTIONALLY DISTURBED BY PIPC QUARTMES

6

SPECIAL FACILITY PLACEMENTS FOR EMOTIONALLY DISTURBED BY STPCT Q

SEPARATE FACILITY PLACEMENTS FOR EMCTIONALLY DISTURBED BY MNOPTTY Q

SEPARATE FACILITY PLACEMENTS FOR EMOTIONALLY DISTURBED BY PONERTY Q

SEPARATE FACHLTTY PLACEMENTS FOR EMOTIONALLY DISTURBED BY PURAL O

Figure 9 Comparisons Among Quartile Mean Cumulative Placement Rates for Regular Classes, Special Classes, Separate Schools, and Other Environments for Multiply Handicapped.

INTEGRATION RATES FOR MULTIPLY HANDICAPPED BY MINOPATY QUARTLLES

INTEGRATION RATES FOR MULTIPLY HANDKCAPPED BY POVERTY QUARTLES

INTEGRATION RATES FOR MULTIPLY HANDICAPPED BY RURAL QUARTILES

				ble		corre	tions	119 Fin	ce and	Demegra	Var	¢			
	$\begin{gathered} \text { PF'EXP } \\ 1970 \end{gathered}$	$\begin{aligned} & \text { PPEXP } \\ & 1980 \end{aligned}$	$\begin{aligned} & \text { PFExp } \\ & 1983 \end{aligned}$	$\begin{aligned} & \text { PIPC } \\ & \mathbf{i} 976 \end{aligned}$	$\begin{gathered} \text { PIPC } \\ 1980 \end{gathered}$	$\begin{aligned} & \text { PIPC } \\ & 1983 \end{aligned}$	$\begin{aligned} & \text { AD.JFER } \\ & 1: 76 \end{aligned}$	$\begin{aligned} & \text { ADJFER } \\ & 1980 . \end{aligned}$	ADJFER 1983	$\begin{gathered} \text { STfC1 } \\ 19.6 \end{gathered}$	$\begin{gathered} \text { STOCT } \\ 1980 \end{gathered}$	$\begin{gathered} \text { STPCT } \\ 1983 \end{gathered}$	RURAL	Manority	POVERTY
Prexp76	1.00	. 974	. 950	. 879	.792	. $\mathrm{il}^{\text {a }}$	-. 499	-. 43.31	-.4!1	$-.047$	-. 072	$-.056$	$-.371$	\cdots	-. 446
PPEXP80		1.00	. 969	. 859	. 777	. 732	-.450	-. 4.44	-. 404	-.048	-. 1083	-. 061	-. 310	-. 043	-. 422
PPEYP83			1.00	. 864	. 769	. 789	-. 434	-. 398	$\cdots .385$. 069	-. 0088	-. 058	-. 229	-. 079	-. 406
PIPC76				1.00	. 937	. 92%	-. 554	- -481	-. 465	-. 073	-. 012	... 016	$-.481$. 035	-. 56 ?
PIPCEO					1.00	. 957	-. 64°	-. 599	-. 502	-. 234	-. 112	-. 153	-. 604	. 024	-. 646
PiPC8:						1.00	-. 602	-. 544	-. 38	-. 221	-. 135	$\cdots .157$	-. 5807	. 063	-. 551
ADJFER: 6							1.00	. 919	- fixic	. 615	. btis	. 565	. 302	.E45	. 838
ALJFER8O								1.00	.93?	. 629	. 602	. 5996	. 280	. 572	. 543
ADJFERES									1.00	. 566	. 565	. 54.3	. 337	. 516	. 9.43
STFCT76										1.00	. 925	. 920	. 032	. 567	. 447
STPCT80											1.00	. 972	-. 051	. 5 t5	. 306
STPCTS3												1.00	. 004	. 516	. 75
RUAAL													1.00	$-.410$.235
MINURiT:			;											1.00	. 153
PCVERTY															1.00
Enroclmmeit*	. 81	. 1954	-.011	. 130	. 240	. 224	$\cdots .199$	$\cdots .098$	$-.084$	-.099	. 025	-. 03, 0	-. 445	. $3: 9$.110

* Correlation betwet enrollment for a giver year and same year fiscal and demograble variable.

66

Taule 2
Mear,s and. Standard Deviations for Irdwpendent Var iables, 1976-77, 1980-81, 1983-84

		1976-77	1980-81	1983-84
PPEXP	Mean SD N	$\begin{array}{r} 1589 \\ 395 \\ 50 \end{array}$	$\begin{array}{r} 2458 \\ 661 \\ 50 \end{array}$	$\begin{array}{r} 3197 \\ 1031 \\ 50 \end{array}$
PIPC	$\begin{aligned} & \text { Mean } \\ & S D \\ & N \end{aligned}$	$\begin{array}{r} 6423 \\ 1088 \\ 50 \end{array}$	$\begin{array}{r} 9540 \\ 1379 \\ 50 \end{array}$	$\begin{array}{r} 11590 \\ 1852 \\ 50 \end{array}$
ADJFER	Mean SD N	$\begin{array}{r} 9.76 \\ 4.15 \\ 50 \end{array}$	$\begin{array}{r} 9.40 \\ 3.91 \\ 50 \end{array}$	$\begin{array}{r} 6.65 \\ 2.92 \\ 50 \end{array}$
STPCT	Mean SD N	$\begin{array}{r} 50.34 \\ 17.75 \\ 50 \end{array}$	$\begin{array}{r} 53.19 \\ 17.39 \\ 50 \end{array}$	$\begin{array}{r} 53.15 \\ 17.44 \\ 50 \end{array}$
RURAL	Meail 5D N	$-$	$\begin{array}{r} 36.00 \\ 15.25 \\ 50 \end{array}$	
MINORITY	Mean SD N	-	$\begin{array}{r} 19.44 \\ 15.35 \\ .50 \end{array}$	-
POVERTY	Mean SD N	-	$\begin{array}{r} 14.35 \\ 4.55 \\ 50 \end{array}$	-

Table 3

Pearson Correlations Between Identification Rates for rotal special Education, Learning Disabled, Enotionally Disturbed, and Multioly Handicapped, and Finance and Demographic Variables at Three Poincs in Time.

			Finance			mograp	
	PPEXP	PIPC	ADJFER	STPC7	RURAL	MIN	POVERTY
PCTSETO-1976	. 072	. 122	-. 125	. 029	-. 358	-. 031	-. 062
PCTSETO-1980	. 004	$\cdots .013$	$-.033$	-. 075	.358 -.110	-. $\mathrm{-} .091$. 074
PCTSETO-1983	-. 072	. 009	-. 057	-. 126	-. 105	-. 12.2	. 144
PCTLDTO-1976	. 309	. 406	-. 2.58	. 025	-. 315	$-.080$	-. 432
PCTLDTO-1980	. 342	. 398	-. 237	-. 045	-. 321	-. 013	-. 40 i
PCTLDTO-1983	. 347	. 430	-. 258	$-.127$	-. .406	.017	-. 2225
PCTEDTO-1976	. 191	. 143	$-.264$	-. 054	-. 432	$-.095$	-. 224
PCTEDTO-1980	. 121	. 169	-. 324	-. .140	-. -.385	-. -.091	-. .194
PCTEDTO-1983	. 050	. 215	-. 354	-. 165	. -.350	-. -134	-. 249
PCTMLTO-1976	-	-	-	-	-	-	..
PCTMLTO-1980	-. 165	$-.126$	-. 001	$\cdots .028$. 007	. 055	. 054
PCTMLTO-1983	. 643	$.131$. 031	-. .041	-. 196	. 107	...014
Note $N=50$							
			8				

Table 4
Means Identification Rates for Total Special Education, Learning Disabled, Emotionally Disturbed, and Multiply Handicapped, 1976-7.7, 1980-81, 1983-84

		1976-77	1980-81	1983-84
Special Education Identification	Mean	7.70	9.61	10.42
	SD	1.12	1.55	1.61
	N	50	50	+ 50
Special Education Identification	Mean	2.12	3.83	4.62
	SD	. 98	1.10	1.04
	N	50	50	+ 50
Emotionally Disturbed Identification	Mean	. 532 .	. 721	. 846
	SD	. 588	. 607	. 665
	N	50	50	- 50
Multiply Handicapped Identification	Mean	-		
	SD	-	. 130	. 135
	N	-	50	${ }_{50}$

Table 7 Mean Identification Rates for Total Speciai Education, Learning Disabled, Emotionally Disturbed and Multip?y Handicapped for Adjusted Federal Education Revenue Quartiles

	$\begin{array}{r} \text { Total } \\ 1976 \end{array}$	$\begin{array}{r} \text { Special } \\ 1980 \end{array}$	Education 1983	Learning Disabled			Emotionally Disturbed			$\begin{array}{r} \text { Multiply } \\ 1980 \end{array}$	$\begin{gathered} \text { Handicapped } \\ 1983 \end{gathered}$					
				1376	1980	1983	1.976	1980	1983							
Low																
Mean	7.7403	9.7312	10.7745	1.8591												
GD	$1 . \mathrm{c} 510$	2.0054	1.9646	1.8591 .7729	3.8526 .8951	5.0445 1.4813	. 7312	. 97	1.0572	. 0851	. 1100					
N	12	12	1.9046 12	.7729 12	.8951 16	1.4813 12	$\begin{array}{r}.5756 \\ \hline 12\end{array}$. 6233	$.5969$.0964	. 1812					
Low Midule																
Mean	7.7687	9.5790	10.2698	2.5865	4.0045											
SD	1.3487	1.0571	1.8072	.9330	1.5010	4.5270 .9416	. 4308	$.850 \%$. 9650	. 1537	. ${ }^{15}$					
N	13	13	+13	- 13	1.5010 13	.9416 13	2522 13	. 7411	. 8214	. 1349	$\therefore 324$					
High Middle																
Mean	7.7652	9.3429	10.2224	2.3541	4.0561											
SD	1.7505	1.2164	1.3985	. .9405	4.856	4.5949 .8410	.6984	. 6223	. 8553	. 1718	. 1209					
N ,	13	13	-13	- 13	-8866 13	.8410 13	9110 13	$\begin{array}{r}.5179 \\ \hline 13\end{array}$. 7212	. 1853	. 1163					
High																
Mean	7.5251	9.6099	10.4501	1.6141												
SD	$2.2 \% 63$	1.3433	1.3088	1.0312	- .2936	4.3133 .7599	. 2632	.4300	. 4949	. 1261	. 1446					
N	12	12	- 12	1.0312 12	- 12	. 7599	. 2548	. 4058	. 3293	.0671	. 1127					
					- 12	12	12	12	12	12	- 12					

Table 11 for Identification Rates lor T ial Special Education, Learning Disabled, Emotionally Disturbed

Table 12

Pearson Correlations Betweeu Special Education Integration Rates and Finance and Demographic Yariables at Three Points in Time.

Cumulative Placement Rates	PPEXP	PIPC	Finance			Demographic	
			ADJFER	STPCT	RURAL	MIN	POVERTY
Regular classes							
1976	. 042	. 074	-. 107	-. 011	-. 280	-. 008	-. 115
1980	. 081	. 083	-. 129	-. 185	--. 118	-. 133	-. 040
1983	. 140	. 134	-. 1.14	-. 163	-. 057	-. 187	. 054
Special Classes							
1976	. 225	. 167	-. 200	$-.051$	-. 222	$\cdots .000$	-. 190
1980	. 209	. 288	$-.344$	-. 238	-. 368	. 057	-. 144
1983	. 133	.283	-. 146	. 057	-. 370	. 204	. 003
Separate Schools							
1976	. 050	. 029	$-.190$	-. 169	-. 208	-. 078	-. 054
1980	.114	.141	-. 219	-. 248	-. 246	. 002	. 023
1983	.106	.241	-. 199	-. 0993	-. 298	. 022	-. 039
Otmer Environments	;						
1976	. 069	. 098	-. $1: 0$	-. 002	-. 161	. 088	-. 006
1980	-. 0.090	. 033	-. 152	-. 190	. 029	-. 164	-. 109
1983	-. 261	-. 172	-. 074	-. 143	. 179	-. 227	-. .108

Note N:40

Table 13 Mean Cumulative placement Rates per Million in Regular Classes. Special Classes, Separate Schocls, and Other Environments for Total Special Education by Per Pupir Expenditure Quartiles.

	Regular Classes			Special Classes			Separate Schools			$\begin{aligned} & \text { Other } \\ & 1976 \end{aligned}$	Environments	
			1983	1976	1980	1983	1976	1980	1983		Envir 1980	$\begin{aligned} & \text { ents } \\ & 1983 \end{aligned}$
Low												
Mean	87075	106836	- 08032	20515	24376	25867						
SD	23092	17157	12350	9833	64377	25867	5286	6447	6193	1377	1663	1498
N	12	12	12	¢2	12	4896 12	265 C	2875	2872	1386	1202	1288
				12			12	12	12	12	12	12
Low Midd?e												
Mean	74302	103343	107578									
SD	16507	16307	13208	7990	26718 8548	28550 90.27			6528	2196	1622	
N	12	12	12	12	8548 12	9027 12	2781 12	2327	3489	1947	953	1310
										11	12	12
High Middle												
Mean	81904	10692	106901	27885								
SD	22123	16708	19241	17932	15755		51006	4098	7929	1215	888	1308
N	13	13	13	17	15755 13	19825 13	3876	3704	6341	1119	915	1641
			-				13	13	13	13	13	13
High												
Mean	84.354	113824	120648	32017								
SD	17625	24773	19241	11454	12186				8856	2030	1352	713
N	12	1,2	12	1?	$\begin{array}{r}12186 \\ \hline\end{array}$	15660 12	5299	5840	6134	2316	2563	. 57
							12	12	12	12	12	12

Table 16 Mean Cumulative placement Rates per Milion in Regular Classes, Special classes, Separate Schools, aild Other Envirorments for Total special Education by state Share of Nonfederal Revenue Quartiles.

	Regular Classes			Special Classes			Separate Schools			Other1976	Environments	
	1976	1980	1983	1976	1980	1983	1976	1980	015 1983		Envir 1980	ents 1983
Low												
Meian	78770	109081	111277	26406	31253	≤ 0134						
SD	23979	24306	19308	19546	15365	11466	6526	5926	6878	1454	1799	1279
${ }^{\prime}$	12	12	12	12	15 12	11466 12	3971 12	3440	4271	1455	2498	1237
Low Middle												
Mean	83426	110228	116115	26656	38171							
SD	16815	19101	18873	11581	10456	14807	6945 4523	$\begin{aligned} & 9366 \\ & 5720 \end{aligned}$	$\begin{aligned} & 9221 \\ & 4799 \end{aligned}$	2177	1560	
N	1.3	13	13	13	13	14807 13	4523 13	$\begin{array}{r} 5720 \\ 13 \end{array}$	$\begin{array}{r} 4799 \\ 13 \end{array}$	$\begin{array}{r} 2835 \\ 12 \end{array}$	$\begin{array}{r} 1205 \\ 12 \end{array}$	1619
High Midule												
Meall	25115	107870	108368	22629	24638							
ED	21687	13766	8490	9379	7002	26722 7514			6961	1584	179.3	1296
N	13	13	13	13	13	7514 13	2961	1633	3301	1665	1029	1063
		1	13	13	13	13	12	13	13	13	13	13
41 gh												
Mean	80296	101045	10647 d	2.525?	25948							
SD	18972	22084	19623	11330	9615	20423	5.30	4782	62.81	1516	833	889
N	11	1	11	11	11	20423	376 11	3.25	7116	1437	1000	1172
								1	1	11	11	11

S'

	Table	$17 \quad \begin{array}{ll} \mathrm{M} \\ \mathrm{~S} \\ & \mathrm{O} \end{array}$	Mean Cumulative Placement Rates per Million in Regular Classes, Special Classes, Separate Schools, and Other Environments for Total Speciai Education by Percent of School Age Children in Rural Areas.									
	Regular Classes			Special Classes			Separate Schools			$\begin{aligned} & \text { Other } \\ & 1976 \end{aligned}$	Environments	
	1976	1980	1983	197.6	1980	1983	1976	1980	1983		1980	1983
Low												
Mean	84523	107609	110762	25868	30560	36387	6826	8357	8536			
SD	18148	22803	22803	11409	12357	14856	5135	4582	4642	2859	1.353 927	1104
N	1 ?	12	12	12	12	12	12	12	12	12	12	12
Low Middle $\begin{gathered}\text { Mean } \\ \text { SD } \\ \mathrm{N}\end{gathered}$												
	88995	110719	113202	29908	40388	40402	7389	7743	10361	1218	1396	
	16111	24315	21253	11787	14555	19257	3858	5256	7214	816		
	12	12	12	12	12	12	12	12	12	11	12	12
High Middle												
Mean	87017	109895	112.334	27905	26768	26923						
SD	20976	15450	10128	17952	6737	9516	2899	3178	2338	1709	2456	1548
N	13	13	13	1?	13	13	13	13	13	13	13	13
High												
Mean	67185	100704	106409	16940	23135	24974	4863	6366	5841	1164	1566	1497
SD	18804	15900	11652	4950	5291	2656	$? 751$	2696	2656	1556	1139	1394
N	12	12	12	12	12	12	12	12	12	12	12	12

Table 18 Mean Cumulative Placement Rates per Million in Regular Classes, Special classes Separate Schools, and Other Environments for Total Special Education by Percent of School Age Children who are Minority.

Table 19 Mean Cumulative placement Rates per Million in Regular ciassej, Special classes Separate Schools, and Other Environments for Total Special Education by Percent of School Age Children in Poverty.

Table 20

Pearson Correlations Between Learring Disabled Integration Rates and Finance and Demographic Yariables at Three Points in Time.

Cumulative Placement Rates	PPEXP	PIPC	Finance		Demographic		
			ADJFER	T	RURAL	MIN	POVERTY
Regular Classes							
1976	. 274	. 355	-. 249	-. 036	-. 272	-. 077	- 428
1980	. 375	. 446	-. 291	-. 132	-. 309	-. 0.099	-.428 -.437
1983	. 470	. 502	-. 305	-. 123	-.379	. .018	-. 280
Special Classes							
1976	440	. 458	-. 212	. 035	-. 399	. 140	-. 339
1980	. 262	. 426	-. 322	-. 126	-. 435	. 075	-. 339
1983	. 260	. 392	-. 134	. 158	-. 504	. 337	-. 106
Separate Schools							
1976	. 1033	. 028	-. 288	-. 199	-. 137	-. $17 €$	
1980	.301	. 362	-. 290	-. 284	-. 309	-. .049	-. 150
1983	. 215	. 233	-. 154	-. 026	-. 282	. 042	-. 052
Other Environments	'						
1976	. 0.35	-. 0*'1	-. 132	. 184	. 024	-. 131	-. 089
1980	. 132	. 248	-. 272	-. 266	. 004	-. 247	-. 265
1983	-. 140	-. 093	. 034	. 008	. 166	-. 108	. 069

106

102

	Table	2 Mear Cumulative placenent Rates per Million in Regular Classes, Special Classes, Separate Schools, and Other Environments for Learning Disabled by Par Capita Personal Income Quartiles.										
	Regular Classes			Special Classes			Separate Schools			Other1976	Environments 19801983	
	1976	1980	1983	1976	1980	1983						
Low												
Mearı	17939	31921	39233	1663	2455							
SD	14318	8411	9550	2480	1061	4096 2208	230 259	220 185	264		47	
N	11	11	11	11	1	2208 11	259 10	185	256	243	90	257
Low MiddleMeanSDN												
	263.37	44169	44305	3347								
	7519	14026	7094	2231	4919	5254 3917	508	225	271	75	28	146
	13	13	13	- 13	13	13	666	355	347	178	43	28.
		1	1.	13						10	13	13
High Middle												
Mean	22877	42232	47727									
SO	12781	12283	14653	5233			425	587	667	157	49	34
N	13	13		5223	10782	8828	668	667	797	393	77	45
	1		13	12			12	13	13	12	13	13
High												
Mean	25871	47156	55726	6688	9683							
SD	9859	15191	9937	3089		12344		1030	1585	92	222	76
N	12	1:2	12	12	12	12 12	766 12	1048	1852	130	460	160

100

Table 23 Mean Cumulative Placement Rates per Million in Regular Classes, Special c?asses, Separate Schools, and Other Environments for Learning Disabled by Adjusted Federal Revenue Quartiles.

16

Table 24 Mean Cumulative Placement Rates per Million in Regular Classes, Special Classes, Separate Schools, and Oi,her Environments for Learning Disabled by State Share of Nonfederal Revenue Quartiles.

	Regular Classes			Special Classes			Separate Schools			$\begin{aligned} & \text { Other } \\ & 1976 \end{aligned}$	Environments	
	1976	1980	1983	1976	1980	1983	1976	1980	1983			
Low												
Mtan	24061	46398	47144	4838								
SD	10929	16668	10920	5209	11186	4607	829	777 1039	582 672	100	217 459	85 194
N	12	12	12	11	12	12	829 11	7279 12	672 12	162 11	459 12	194 12
Low MiddleMeanSDN												
	23725	40190	51420	3973	8015	12321						
	9160	12435	14025	3070	5299	12321 9147	406 639	641 749	1064 1128		57	89
	13	13	13	13	13	13	$\begin{array}{r}13 \\ \hline\end{array}$	749 13	1128 13	18 11	88 13	153 13
High Middle												
Mean	25652	40355	42909	3102	4381							
SD	13824	10069	7062	2851	2494	3693				180	38	91
N	13	13	13	13	13	13	653 11	346 13	315 13	419 11	84 13	230
High												
Mean	19721	39670	45882	4670	5988	11964						
SD	11998	15549	14496	4206	5726	14172	248	331 507			32	107
N	11	11	11	11	11	11	$\begin{array}{r}11 \\ \hline 18\end{array}$	11	1896 11	144 9	42	261 11

10°
10%

	Table $25 \begin{array}{cc}\text { M } \\ & \\ & S\end{array}$		Mean Cumulative placement Rates per Million in Regular Classes, Special Classes, Separate Schools, and Other Environments for Learning Disabled by Percent of School-Aged Children Living in Rural Areas.									
	$\xrightarrow{\text { Regular Classes }}$			Special Classes			Separate Schools			Other	Environments	
	$19 \% 6$	1980	1983	1976	1980	1983	1976	1980	1983		1980	$\begin{aligned} & \text { ents } \\ & 1983 \end{aligned}$
Low												
Mean	26470	45146	51977	5281	7746	14526	571	823	958			
SD	11107	14952	12543	3228	4278	9685	788	823 959	958 1031	124 199	84 139	71 161
N	12	12	12	+12	+12	9685 12	788 11	959 12	1031 12	199 10	139 12	161 12
Low Middle											.	
Mean	24972	45079	49392	5562	12645	12947						
SD	10690	14533	12828	3281	10621	12025	568 708		1219	52	34	102
N	12	$\begin{array}{r}12 \\ \hline\end{array}$	12 12	$\begin{array}{r}1281 \\ \hline\end{array}$	10621 12	12025 12	708	739 12	$\begin{array}{r} 1856 \\ 12 \end{array}$	83 11	49 12	131 12
High Middle												
Mean	24347	40388	44772	4079	40.37	4334	278					
SD	14123	13874	11245	5160	3145	3366	547				35 440	29
N	13	13	13	- 12	$\begin{array}{r}13 \\ \hline\end{array}$	3366 13	547 12	572 13	494 13	396 12	440 13	59 13
$\mathrm{H}^{\text {igh }}$												
Mean	17812	36040	41519	1459	3429	4485	302	279	308			
SD	8193	10138	9574	1643	2607	2627	3×8	4.36	308	86 242	64 112	174 323
N	12	12	12	12	12	12	11	12 12	12	242 9	112 12	323 12

105

	Table $26 \quad \begin{gathered}\text { M } \\ \\ \\ \\ \\ S\end{gathered}$		Mean Cumulative Placement Rates per Million in Regular Classes, Special Classes. Separate Schools, and. Other Environments for Learning Disabled by Percent of School-Aged Children who are Minority.									
	Regular classas			Special Classes			Separate Schools			Other 1976	Environments	
	1976	1980	1933	1976	1980	1983	1976	1980	1983			
Low												
Mean	? 7817	46262	49188	3568	4746							
SD	8963	14169	14637	5204	3768	6966	467 561	501	504	194	207	105
N	12	+12	12	$\begin{array}{r}12 \\ \hline\end{array}$	3768 12	6795 12	561 12	715 12	751 12	438	456	238
Low MiddleMeanSDN												
	18526	37417	42184	3952	6697							
	9965	11909	11405	3008	3762	4953		549	604	71	62	126
	13	13	13	12	$\begin{array}{r}13 \\ \hline\end{array}$	7953 13	999	918 13	875	129	116	231
High Middle												
Mean	25310	42548	50370									
SD	13165	13766	10400	3747			298	522	1105	65	53	95
N	13	13	13	13	11356 13	12585 13	348	645	1768	139	93	233
			13	13	13	13	- 2	13		12	13	13
High												
Mean	22173	40503	45748	4519	6146							
SD	12299	14872	10576	3305	4000				530	85	19	36
N	11	1:1	11	311	400	9588	192	617	734	187	-2	65
			- 1	1	11	11	10	11	11	9	11	

	Table	Mean Cumulative Placement Rates per Million in Regular Classes, Special Classes, Separate Schools, and Other Environments for Learning Disabled by Percent of School-Aged Children Living in Poverty.										
	Regular Classes			Special Classes			Separate Schools			$\begin{aligned} & \text { Other } \\ & 1976 \end{aligned}$	Environments	
	1976	1980	1983	1976	1980	1983	$\begin{gathered} \text { Sel } \\ 1976 \end{gathered}$	1980	1983		Envir 1980	1983
Low												
Mean	30707	46384	4775	4712	8340	5637	451	450				
SD	962.3	9598	9813	5136	11297	3799	555	693	339 534	161	185	31
N	12	12	12	11	12	12	555 11	693 12	534 12	395 11	458 12	45 12
Low MiddleMeanSDN												
	21970	44975	49502	5367	8492	13136						
	10565	16320	15545	3500	4688	9663	498 824		860 1074		69	72
	14	14	14	$\begin{array}{r}14 \\ \hline\end{array}$	4688 14	$\begin{array}{r}14 \\ \hline\end{array}$	824 14	1048 14	1074 14	$\begin{array}{r} 111 \\ 13 \end{array}$	$\begin{array}{r} 132 \\ 14 \end{array}$	150 14
High Middle												
Mean	22597	40846	49177	3949	6462	11787						
SD	8288	: 3390	8813	3362	5491	12301	481 671	433 477	1238 1790		64	225
N	12	12	12	12	12	12	11	+12	1790 12	221 9	88 12	353 12
High												
Mean	18212	33074	40021	2020	3145							
SD	14410	11049	10559	2444	1660		246 250	373		96	22	42
N	11	11	11	11	11	11	- 10	363 11	258 11	241 9	22	61 11

Table 28
Aarson Correlations Between Emotionally Disturbed Integration Rates and Finance and wnographic Variables at Three Points in Time.

Cumulative Placement Rates	PPEXP	PIPC	Finance		Demographic		
			ADJFER	STPCT	RURAL	MIN	POVERTY
Regular Classes							
1976	. 186	. 168	-. 298	-. 133	-. 344	-. 158	-. 292
1980	. 097	. 161	-. 322	-. 163	-. 389	-. 086	-. 216
1983	. 092	. 247	-. 383	-. 189	-. 340	-. 140	-. 260
Special Classes							
1976	. 395	. 332	-. 417	-. 178	-. 418	-. 032	-. 315
1980	. 359	. 445	-. 472	-. 343	-. 503	. 037	-. 277
1983	. 243	. 406	-. 373	-. 194	-. 398	-. 008	-. 192
Separate schools							
1976	. 178	. 181	-. 307	$-.186$	-. 342	-. 009	-. 238
1980	. 250	. 341	-. 375	$-.383$	-. 397	. 023	-. 147
1983	. 218	. 399	$-.323$	-. 172	-. 372	. 013	-. 151
Other Environments	;						
1976	. 238	. 376	-. 111	. 014	-. 328	. 170	
1930	. 088	. 303	-. 326	-. 302	-. 241	-. 012	-. .225
1983	-. 069	. 094	-. 156	-. 158	-. 063	-. 078	-. 107

115

Table 29 Mean Cumulative Placement Rates per Millicon in Regular Classes, Special classes, Separate Schools, and Other Environments for Emotionally Disturbed by Per Pupil Expenditure Quartiles.

	Regular Classes			Special Classes			Separate Schools			$\begin{aligned} & \text { Other } \\ & 1976 \end{aligned}$	Environments	
	1976	1980	1983	1976	1980	1983	1976	1980	1983		Envir 1980	nts 1983
Low												
Mean		8800										
SD	6881	10795	$\begin{aligned} & 7673 \\ & 8677 \end{aligned}$	$\begin{aligned} & 1755 \\ & 1514 \end{aligned}$	$\begin{aligned} & 2278 \\ & 1670 \end{aligned}$	$\begin{aligned} & 2762 \\ & 1860 \end{aligned}$	641	887	766	141	142	215
N	12	12	12	12	$\begin{array}{r} 1670 \\ 12 \end{array}$	$\begin{array}{r} 1860 \\ 12 \end{array}$	616	749	728	198	131	307
	-	12					12	12	12	11	12	+12
Low Middle												
Mean	3451		7522	1469								
SD	3401	3576	5080	863	$\begin{aligned} & 2870 \\ & 1653 \end{aligned}$	$\begin{aligned} & 3432 \\ & 1682 \end{aligned}$	676	879	1084	394	210	
N	12	12	12	12	$\begin{array}{r} 1653 \\ 12 \end{array}$	$\begin{array}{r} 1682 \\ 12 \end{array}$	592	699	715	482	253	324
					12					11	12	12
High Middle												
Mean	7855											
SD	5997	4316	7802	3396	$\begin{aligned} & 5498 \\ & 3486 \end{aligned}$		1586	1193	1860	162	152	
N	13	13	13	13	13	$\begin{array}{r} 5182 \\ 13 \end{array}$	2484	1248	2185	247	323	384
		13	13	13	13		12	13	13	11	13	13
High												
Mean	7181											
SD	5573	7971	7445	4335 2584	$\begin{aligned} & 6139 \\ & 3769 \end{aligned}$	6543 4448	1379	2109	2.273	303	343	195
N	12	1;2	+12	r 12	$\begin{array}{r} 3769 \\ 12 \end{array}$	4448 12	$\begin{array}{r} 1085 \\ 12 \end{array}$	1527	2050	251	376	213
				12	- 12	12	12	12	12	12	12	12

116

	Table 31											
	Regular Classes			Special Classes			Separate Schools			Other1976	Environments	
	1976	1980	198.3	1976	1980	1983						
Low												
Mean	7503	11729	11908	4070	6773							
SD	6513	6902	6642	2254	3840		1362	1967		162	38:	
N	12	+12	6042 12	2254 12	3840 12	$\begin{array}{r} 4143 \\ 12 \end{array}$	1212 12	1507	2093	185	437	228
		12	12	12	12		12				12	12
Low MiddleMeanSDN												
	6232	10009	10537									
	4709	9425	8349	32:5	3162		1657	1605	1763	385	221	284
	13	13	13	$\begin{array}{r}13 \\ \hline 1\end{array}$	162 13	3403	2316	1291	1461	369	217	367
	1	13	13	13	13		13	13	13	13	13	13
High Middle												
Mean	7190	7195	9550	2351	3434							
SD	1082	6298	8521	2292	2021	4911			1404	322	126	268
	13	13	13	13	13	13	612 12	551	1909	421	229	310
High												
Mean	3454	4869	4937									
CD	3296	5017	3246				483	671	676	97	103	153
N	11	1:1	11	129	1131	1161	390	710	471	120	119	319
				1	1	11	11	11	11	10	11	

120

Table 32 Mean Cumulative Placement Rates per Million in Regular classes, Special classes, Separate Schools, and Other Environments for Emotionally Disturbed by State Share of Nonfederal Revenue Quartiles.

	Regular classes			Special Classes			Separate Schools			$\begin{aligned} & \text { Other } \\ & 1976 \end{aligned}$	Environments	
		1980	1983	1976	1980	1983	1976	1980	1983		Envir 1980	$\begin{aligned} & \text { ents } \\ & 1983 \end{aligned}$
Low												
Mean	7029	10351	11009	3409	5506							
SD	6884	7355	7060	2691	3864	5707 4111	1118 910	1346 995	1849	308	352	294
N	12	12	12	12	12	12 12	910 12	995 12	2019 12	379 11	455 12	324 12
Low MiddleMeanSDN												
	6579	7756	9803	4146								
	4416	4427	5195	3281	3746	3427		2046	1875	282	210	269
	13	13	13	$\begin{array}{r}13 \\ \hline\end{array}$	13	3427 13	2359 13	1662	1481	259	216	361
		13	13	13	13	13		13	13	12	13	13
High Middle												
Mean	0204	10047	9958	1890	3183	3460						
SD	6610	9931	8585	1241	1745	2141				191	187	184
N				13	17	2141 13	1017	625	1012	379	225	221
	13	13	13	13	13		12	13	13	12	13	13
High												
Mean	4727	5665	6304									
SD	4957	6768	8431	2633	3226	5434		514	1182	223	84	151
N	11	$1 ; 1$	11	- 11	- 11	54	324	665	2057	268	118	320
						1	11	11	11	10	11	11

12%

Table 34 Mean Cumulative Placement Rates per Million in Regular classes, Special classes, Separate Schools, and Other Environments for Emotionally Disturbed by Percent of School-aged Children who are Minority.

'	Regular Classes			Special Classes			Separate Schools			Other1976	Environments	
	1976	1980	1983	1976	1980	1983	1976	1980	1983		1980	1983
Low												
Mean	7086	9221	10261	2562	3202	4281	934	1174	1251	124	232	194
SD	7168	9850	8148	2239	1650	2213	1067	770	935	200	259	240
N	12	12	12	12	12	12	12	12	12	12	12	12
Low Middle												
Mean	6274	8340	9430	2980	4598	4371	889	1198	1501	155	187	312
SD	6488	7328	7919	2418	3263	3746	970	1045	1691	180	315	445
N	13	13	13	13	13	13	12	13	13	10	13	13
High Middle												
Mean	6330	9056	10317	4047	5557	6420	1661	1541	2154	460	245	255
SD	5365	7456	8285	3653	4659	5810	2329	1737	2391	400	325	290
N	13	13	13	13	13	13	12	13	13	12	13	13
High												
Mean	4285	7379	7136	2213	3316	3107	702	1118	1012	220	185	125
SD	2976	4863	4766	1519	1751	1667	452	1038	1045	325	185 278	156
N	11	11	11	11	11	11	10	11	11	10	11	11

12^{\prime}
$12 t$

	Table 35											
	Regular Classes			Special Classes			Separate Schools			$\begin{aligned} & \text { Other } \\ & 1976 \end{aligned}$	Environments 19801983	
	1976	1980	1983	1976	1980	1983	1976	1980	1983			
Low												
Mean	9577	11968	13006	4618	$580 €$	5206	1848	1289	1574	292	359	
SD	7528	10254	8745	3279	3754	3705	2505	1075	1821	353	455	412
N	12	12	12	12	12	12	12	12	12	11	12	12
Low Middle												
Mean	4054	6300	7330	2339	3603	4284	863					
SD	4690	4736	5116	2078	2090	2467	911	119 ?	1368 1121	213 269	164 195	129 148
N	14	14	14	14	14	14	14	14	14	14	14	148 14
High Middle												
Mean	7909	10580	11546	3505	5298	6427	1003	1473	2399			
SD	4465	7299	8480	2645	3930	5872	699	1612	2327	360	165	384
N	12	12	12	12	12	12	11	12	- 12	+10	12	384 12
High												
Mean	3266	5381	5555				554	と27		175	150	
SD	3157	4643	4513	1318	1236	1248	437	7×9	391	329	240	+98
N	11	11	11	11	11	11	11	11	11	10	11	11

$12{ }^{\circ}$

Tabie 36
Pearson Correlations Retween Multiply Handicapped Integration Rates and Finance and Demographic Yariables at Three Points in Time.

Cumulative Placement Rates	PPEXP	PIPC	Finance		Demographic				
			ADJFER	STPCT	RURAL	MIN	POVERTY		
Regular Classes									
1976	-	-	-	-	-				
1980	-. 108	. 020	-. 167	-. 108	-. -140				
1983	. 051	. 121	-. 041	-.168 -.163	-.140 -.106	.042 -.084	-.056 -.126		
Special Classes 1976									
1980	-. 120	. 071	$-.168$	-. 036	-. -300	. 104	- -131		
1983	-. 017	. 080	-. 051	-. 146	-.300 -.150	.0104 -.014	-.131 -.130		
Separate Schools									
1976	-	-	-	-	-	-			
1980	$-.095$. 071	-. 162	. 029	-. 297	-. -024	-. -195		
1983	$-.041$. 076	-. 077	-. 040	-.260	. .073	-. -.112		
Other Environments 1976	-	-	-						
1980	. 169	-. 084	-. 024	. 079	. 127	-. -776			
1983	-. 288	-. 223	. 102	. 076			$\begin{array}{r} -.081 \\ .047 \end{array}$		

Table 37 Mean Cumulative Placement Rates per Million in Regular Classes, Special classes Separate Schools, and Other Environments for Multiply Handicapped by per Pupil Expenditures.

	Regular 1980	$\begin{gathered} \text { Classes } \\ 1983 \end{gathered}$	$\begin{gathered} \text { Special } \\ 1980 \end{gathered}$	$\begin{gathered} \text { Classes } \\ 1983 \end{gathered}$	$\begin{gathered} \text { Separate } \\ 1980 \end{gathered}$	$\begin{aligned} & \text { Schools } \\ & 1983 \end{aligned}$	Other Environments 19801983	
Low								
Mean	1618	1800	1281	1587	817	926	225	146
SD	1286	1238	1009	1087	1065	943	470	193
	12	12	12	12	12	12	12	12
Low Middle								
Mean	1820	1520	1268	1155	489	500	57	
¢ ${ }^{\text {d }}$	2614	928	1240	644	509	364	63	113
N	11	12	11	12	11	12	$\begin{aligned} & 03 \\ & 11 \end{aligned}$	12
High Middle								
Mean		1250	1118	1125	213	312	8	20
SD	1523	989	591	843	241	374	13	40
N	10	13	10	13	+10	13	10	13
High								
Mean	1391	1924	1011	1467	6.35			
SD	1369	: 1467	1125	1359	1004	1216	192	31
N	11	- 12	11	12	11	12	11	12

$13:$

Table 39 Mean Cumulative Placement Rates per Million in Regular Classes, Special Classes, Separate Schools, and Other Environments for Multiply Handicapped by Adjusted Federal Education Revenue.

Table 40 Mean Cumulative Placement Rates per Million in Regular Classes, Special Classes, Separate Schools, and Other Environments for Multiply Handicapped by State Share of Nonfederal Education Revenue.

	$\begin{gathered} \text { Regular } \\ 1980 \end{gathered}$	$\begin{aligned} & \text { Classes } \\ & 1983 \end{aligned}$	$\begin{gathered} \text { Special } \\ 1980 \end{gathered}$	$\begin{gathered} \text { Classes } \\ 1983 \end{gathered}$	$\begin{gathered} \text { Separate } \\ 1980 \end{gathered}$	$\begin{aligned} & \text { Schools } \\ & 1983 \end{aligned}$	Other Environments 19801983	
Low								
Mean	1449	1636	843	1346	259			
SD	1390	1106	561	886	281	426	194	88
N	11	12	11	12	+11	+12	194 11	81 12
Low Middle								
Mean	1626	1995	1332	1661	602	891	39	
SD	1475	1365	1147	1244	972	1226	42	76
N	12	13	12	13	12	13	12	13
High Middle								
Mean	2551	1409	1726	1105				
SD	2549	1366	1277	1131	1063	848	233 492	$\begin{array}{r} 66 \\ 107 \end{array}$
N	11	13	11	13	11	13	11	13
High								
Mean	310	1389	739	1184	281	538		
SD	531	627	500	589	335	428	45	100
N	10	111	10	11	10	428 11	56 10	202

 Separate Schools, and Other Environments for Multiply Handicapped by Percent of School-Aged Children Living in Rural Areas.

Low $\begin{aligned} & \\ & \\ & \\ & \text { SD }\end{aligned}$
SD
N

Low Middle
Mean Mean
SD
N

High Middle
Mean
SD
N

High

Mean	1783	1793
$S D$	1675	1160
N	12	12

N

Special Classes
19801983

1688	1407
1396	1250
10	12

1007	1570
1161	1169
10	12

1014	1007
517	772
12	13

1042	1359
790	789
12	12

Separate Schools
$1980 \quad 1983$
905
$1059 \quad 1060$
$\begin{array}{rr}1059 & 1060 \\ 10 & 12\end{array}$

543	821
1063	1087
10	12

330	261
260	394
12	13

13
488

488	567
666	408
12	12

60
182
12

Other Environmients
19801983
$51 \quad 37$

83	77
10	12

27	57
35	83
10	12

$\begin{array}{ll}186 & 119 \\ 480 & 191\end{array}$

130

Table 42 Mean Cumulative Placement Rates per Million in Regular Classes, Special Classes, Separate Schools, and Other Environments for Multiply Handicapped by Percent of School-Aged Children who are Minority.

	$\begin{aligned} & \text { Regular } \\ & 1980 \end{aligned}$	$\begin{gathered} \text { Classses } \\ 1983 \end{gathered}$	$\begin{gathered} \text { Special } \\ 1980 \end{gathered}$	$\begin{gathered} \text { Masses } \\ 1983 \end{gathered}$	$\begin{gathered} \text { Separate } \\ 1980 \end{gathered}$	$\begin{gathered} \text { Schools } \\ 1983 \end{gathered}$	Other Environments 19801983	
Low								
Mean	1822	1410	1223	1129	724	489	252	86
SD	1688	1317	1067	1149	1150	930	518	198
		12	11	12	11	12	11	12
Low Miadle								
Mean	1190	1811	573	1404	268	533	27	58
SD	1241	1085	639	774	324	387	42	79
N	11	13	11	13	11	13	11	13
High Middle								
Mean	1444	1874	1251	1616	542	792	52	84
SD	880	944	729	861	403	713	57	103
N	13	13	13	13	13	13	13	13
High								
Mean	2130	1303	1514	1120	703	672	62	42
SD	2920	1353	1499	1250	1126	1178	75	74
N	9	11	9	11	9	11	9	11

	43	Mean Cumulative Placement Rates per Million in Regular Classes, Special Classes, Separate Schools, and Other Environments for Multinly Handicapped by Percent of School-Aged Children Living in Poverty.						
	$\begin{gathered} \text { Regular } \\ 1980 \end{gathered}$	$\begin{gathered} \text { Classes } \\ 1983 \end{gathered}$	$\begin{gathered} \text { Special } \\ 1980 \end{gathered}$	$\begin{gathered} \text { Classes } \\ 1983 \end{gathered}$	$\begin{gathered} \text { Separate } \\ 1980 \end{gathered}$	$\begin{gathered} \text { Schoo 1s } \\ 1983 \end{gathered}$	Other En 1980	$\begin{aligned} & \text { ronments } \\ & 1983 \end{aligned}$
Low								
Mean	1478	1724						
SD	1018	1161	1365 1018		842	778	114	53
N	9	+12	1018 9	1127 12	1105	987	215	82
		12			9	12	$\begin{array}{r} \\ \hline\end{array}$	82 12
Low Middle								
Mean	1952							
SD	1574	1299	1018	1471 1135				
H	14	14	14 1018	1135 14	1030 14	1063	450	173
							14	14
High Middle								
Mean	1215	1431	877					
SD	1264	1213	740	936				
N	10	12	10	12	$\begin{array}{r} 203 \\ 10 \end{array}$	$\begin{array}{r} 646 \\ \quad 12 \end{array}$	54	$\begin{array}{r} 118 \\ 12 \end{array}$
High								
Mean	171.	1430	1122					
SD	2624	1032	1215	1165 804		476	79	E0
N	: 1	- 11	11		$\begin{array}{r} 446 \\ 11 \end{array}$	$\begin{array}{r} 377 \\ 11 \end{array}$	73 11	67

[^0]:

 * Reproductions supplied by EDRS are the best that can be made
 * from the original document.

[^1]: Two major tasks facing researchers using existing, larre-scale data bases are: (1) identifying the variables

